First-Order Partial Differentiation Multivariable Calculus X. Du

e Fundamental question: How do we represent the partial derivatives of a vector-valued
function, especially one that has an input of a vector of n variables but an output of a

vector of m variables (x,, X,,...,x,,) = (f,(u,,u,,...,u,), f,(u,,u,,...,u.),..., f_(u,u,,....,u.)) ?
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o Most common scenario in change of variables.
o Jisasquare matrix

o Jacobian:

O(Xy, Xy ey X)

= det(J)
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o The Jacobian is most applicable for a change of variables on iterated integrals.

o Common Jacobians:
= Cartesian plane-polar plane and Cartesian-cylindrical transformations
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= Cartesian-spherical transformations

(x,¥,2) =(pcos@sing, psin@sing, pCcos @)

(0.0,p) = {m,tanl(%j,tanl(—\w}}
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