- Fundamental question: How do we represent the partial derivatives of a vector-valued function, especially one that has an input of a vector of n variables but an output of a vector of m variables $(x_1, x_2, ..., x_m) = (f_1(u_1, u_2, ..., u_n), f_2(u_1, u_2, ..., u_n), ..., f_m(u_1, u_2, ..., u_n))$?
- Jacobian matrix: $\mathbf{J} = \begin{bmatrix} \frac{\partial x_1}{\partial u_1} & \frac{\partial x_1}{\partial u_2} & \dots & \frac{\partial x_1}{\partial u_n} \\ \frac{\partial x_2}{\partial u_1} & \frac{\partial x_2}{\partial u_2} & \dots & \frac{\partial x_2}{\partial u_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_m}{\partial u_1} & \frac{\partial x_m}{\partial u_2} & \dots & \frac{\partial x_m}{\partial u_n} \end{bmatrix}$ Answer to the fundamental question.
 $m \times n$ matrix of all first-order partial derivatives of a vector-valued function.

• If
$$m = 1$$
: $\mathbf{J} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$ for $f(x_1, x_2, \dots x_n)$
• If $m = n$: $\mathbf{J} = \begin{bmatrix} \frac{\partial x_1}{\partial u_1} & \frac{\partial x_1}{\partial u_2} & \cdots & \frac{\partial x_1}{\partial u_n} \\ \frac{\partial x_2}{\partial u_1} & \frac{\partial x_2}{\partial u_2} & \cdots & \frac{\partial x_2}{\partial u_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial u_1} & \frac{\partial x_n}{\partial u_2} & \cdots & \frac{\partial x_n}{\partial u_n} \end{bmatrix}$

- Most common scenario in change of variables.
- **J** is a square matrix
- **Jacobian**: $\frac{\partial(x_1, x_2, ..., x_n)}{\partial(u_1, u_2, ..., u_n)} = \det(\mathbf{J})$
- The Jacobian is most applicable for a change of variables on iterated integrals.
- Common Jacobians:
 - Cartesian plane-polar plane and Cartesian-cylindrical transformations

•
$$(x, y) = (r\cos\theta, r\sin\theta)$$
 $(r, \theta) = (\sqrt{x^2 + y^2}, \tan^{-1}\left(\frac{y}{x}\right))$
• $(x, y, z) = (r\cos\theta, r\sin\theta, z)$ $(r, \theta, z) = (\sqrt{x^2 + y^2}, \tan^{-1}\left(\frac{y}{x}\right), z)$

•
$$(x, y, z) = (r\cos\theta, r\sin\theta, z)$$
 $(r, \theta, z) = (\sqrt{x^2 + y^2}, \tan^{-1}\left(\frac{y}{x}\right), z)$

•
$$\frac{\partial(x,y)}{\partial(r,\theta)} = r$$
 $\frac{\partial(r,\theta)}{\partial(x,y)} = \frac{1}{r} = \frac{1}{\sqrt{x^2 + y^2}}$

- Cartesian-spherical transformations
 - $(x, y, z) = (\rho \cos \theta \sin \varphi, \rho \sin \theta \sin \varphi, \rho \cos \varphi)$

•
$$(\rho, \theta, \varphi) = \left(\sqrt{x^2 + y^2 + z^2}, \tan^{-1}\left(\frac{y}{x}\right), \tan^{-1}\left(\frac{\sqrt{x^2 + y^2}}{z}\right)\right)$$

•
$$\frac{\partial(x, y, z)}{\partial(r, \theta, \varphi)} = \rho^2 \sin \varphi$$
 $\frac{\partial(r, \theta, \varphi)}{\partial(x, y, z)} = \frac{1}{\rho^2 \sin \varphi}$